module List:`sig`

..`end`

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a problem with very long lists. When the function takes several list arguments, an approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.

`val length : ``'a list -> int`

Return the length (number of elements) of the given list.

`val compare_lengths : ``'a list -> 'b list -> int`

Compare the lengths of two lists. `compare_lengths l1 l2`

is
equivalent to `compare (length l1) (length l2)`

, except that
the computation stops after itering on the shortest list.

**Since**4.05.0

`val compare_length_with : ``'a list -> int -> int`

Compare the length of a list to an integer. `compare_length_with l n`

is
equivalent to `compare (length l) n`

, except that
the computation stops after at most `n`

iterations on the list.

**Since**4.05.0

`val cons : ``'a -> 'a list -> 'a list`

`cons x xs`

is `x :: xs`

**Since**4.03.0

`val hd : ``'a list -> 'a`

Return the first element of the given list. Raise
`Failure "hd"`

if the list is empty.

`val tl : ``'a list -> 'a list`

Return the given list without its first element. Raise
`Failure "tl"`

if the list is empty.

`val nth : ``'a list -> int -> 'a`

Return the `n`

-th element of the given list.
The first element (head of the list) is at position 0.
Raise `Failure "nth"`

if the list is too short.
Raise `Invalid_argument "List.nth"`

if `n`

is negative.

`val nth_opt : ``'a list -> int -> 'a option`

Return the `n`

-th element of the given list.
The first element (head of the list) is at position 0.
Return `None`

if the list is too short.
Raise `Invalid_argument "List.nth"`

if `n`

is negative.

**Since**4.05

`val rev : ``'a list -> 'a list`

List reversal.

`val init : ``int -> (int -> 'a) -> 'a list`

`List.init len f`

is `f 0; f 1; ...; f (len-1)`

, evaluated left to right.

**Since**4.06.0**Raises**`Invalid_argument`

if len < 0.

`val append : ``'a list -> 'a list -> 'a list`

Concatenate two lists. Same as the infix operator `@`

.
Not tail-recursive (length of the first argument).

`val rev_append : ``'a list -> 'a list -> 'a list`

`List.rev_append l1 l2`

reverses `l1`

and concatenates it to `l2`

.
This is equivalent to `List.rev`

` l1 @ l2`

, but `rev_append`

is
tail-recursive and more efficient.

`val concat : ``'a list list -> 'a list`

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

`val flatten : ``'a list list -> 'a list`

An alias for `concat`

.

`val iter : ``('a -> unit) -> 'a list -> unit`

`List.iter f [a1; ...; an]`

applies function `f`

in turn to
`a1; ...; an`

. It is equivalent to
`begin f a1; f a2; ...; f an; () end`

.

`val iteri : ``(int -> 'a -> unit) -> 'a list -> unit`

Same as `List.iter`

, but the function is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.

**Since**4.00.0

`val map : ``('a -> 'b) -> 'a list -> 'b list`

`List.map f [a1; ...; an]`

applies function `f`

to `a1, ..., an`

,
and builds the list `[f a1; ...; f an]`

with the results returned by `f`

. Not tail-recursive.

`val mapi : ``(int -> 'a -> 'b) -> 'a list -> 'b list`

Same as `List.map`

, but the function is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument. Not tail-recursive.

**Since**4.00.0

`val rev_map : ``('a -> 'b) -> 'a list -> 'b list`

`val fold_left : ``('a -> 'b -> 'a) -> 'a -> 'b list -> 'a`

`List.fold_left f a [b1; ...; bn]`

is
`f (... (f (f a b1) b2) ...) bn`

.

`val fold_right : ``('a -> 'b -> 'b) -> 'a list -> 'b -> 'b`

`List.fold_right f [a1; ...; an] b`

is
`f a1 (f a2 (... (f an b) ...))`

. Not tail-recursive.

`val iter2 : ``('a -> 'b -> unit) -> 'a list -> 'b list -> unit`

`List.iter2 f [a1; ...; an] [b1; ...; bn]`

calls in turn
`f a1 b1; ...; f an bn`

.
Raise `Invalid_argument`

if the two lists are determined
to have different lengths.

`val map2 : ``('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list`

`List.map2 f [a1; ...; an] [b1; ...; bn]`

is
`[f a1 b1; ...; f an bn]`

.
Raise `Invalid_argument`

if the two lists are determined
to have different lengths. Not tail-recursive.

`val rev_map2 : ``('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list`

`val fold_left2 : ``('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a`

`List.fold_left2 f a [b1; ...; bn] [c1; ...; cn]`

is
`f (... (f (f a b1 c1) b2 c2) ...) bn cn`

.
Raise `Invalid_argument`

if the two lists are determined
to have different lengths.

`val fold_right2 : ``('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c`

`List.fold_right2 f [a1; ...; an] [b1; ...; bn] c`

is
`f a1 b1 (f a2 b2 (... (f an bn c) ...))`

.
Raise `Invalid_argument`

if the two lists are determined
to have different lengths. Not tail-recursive.

`val for_all : ``('a -> bool) -> 'a list -> bool`

`for_all p [a1; ...; an]`

checks if all elements of the list
satisfy the predicate `p`

. That is, it returns
`(p a1) && (p a2) && ... && (p an)`

.

`val exists : ``('a -> bool) -> 'a list -> bool`

`exists p [a1; ...; an]`

checks if at least one element of
the list satisfies the predicate `p`

. That is, it returns
`(p a1) || (p a2) || ... || (p an)`

.

`val for_all2 : ``('a -> 'b -> bool) -> 'a list -> 'b list -> bool`

Same as `List.for_all`

, but for a two-argument predicate.
Raise `Invalid_argument`

if the two lists are determined
to have different lengths.

`val exists2 : ``('a -> 'b -> bool) -> 'a list -> 'b list -> bool`

Same as `List.exists`

, but for a two-argument predicate.
Raise `Invalid_argument`

if the two lists are determined
to have different lengths.

`val mem : ``'a -> 'a list -> bool`

`mem a l`

is true if and only if `a`

is equal
to an element of `l`

.

`val memq : ``'a -> 'a list -> bool`

Same as `List.mem`

, but uses physical equality instead of structural
equality to compare list elements.

`val find : ``('a -> bool) -> 'a list -> 'a`

`find p l`

returns the first element of the list `l`

that satisfies the predicate `p`

.
Raise `Not_found`

if there is no value that satisfies `p`

in the
list `l`

.

`val find_opt : ``('a -> bool) -> 'a list -> 'a option`

`find_opt p l`

returns the first element of the list `l`

that
satisfies the predicate `p`

, or `None`

if there is no value that
satisfies `p`

in the list `l`

.

**Since**4.05

`val filter : ``('a -> bool) -> 'a list -> 'a list`

`filter p l`

returns all the elements of the list `l`

that satisfy the predicate `p`

. The order of the elements
in the input list is preserved.

`val find_all : ``('a -> bool) -> 'a list -> 'a list`

`find_all`

is another name for `List.filter`

.

`val partition : ``('a -> bool) -> 'a list -> 'a list * 'a list`

`partition p l`

returns a pair of lists `(l1, l2)`

, where
`l1`

is the list of all the elements of `l`

that
satisfy the predicate `p`

, and `l2`

is the list of all the
elements of `l`

that do not satisfy `p`

.
The order of the elements in the input list is preserved.

`val assoc : ``'a -> ('a * 'b) list -> 'b`

`assoc a l`

returns the value associated with key `a`

in the list of
pairs `l`

. That is,
`assoc a [ ...; (a,b); ...] = b`

if `(a,b)`

is the leftmost binding of `a`

in list `l`

.
Raise `Not_found`

if there is no value associated with `a`

in the
list `l`

.

`val assoc_opt : ``'a -> ('a * 'b) list -> 'b option`

`assoc_opt a l`

returns the value associated with key `a`

in the list of
pairs `l`

. That is,
`assoc_opt a [ ...; (a,b); ...] = b`

if `(a,b)`

is the leftmost binding of `a`

in list `l`

.
Returns `None`

if there is no value associated with `a`

in the
list `l`

.

**Since**4.05

`val assq : ``'a -> ('a * 'b) list -> 'b`

Same as `List.assoc`

, but uses physical equality instead of structural
equality to compare keys.

`val assq_opt : ``'a -> ('a * 'b) list -> 'b option`

Same as `List.assoc_opt`

, but uses physical equality instead of structural
equality to compare keys.

**Since**4.05

`val mem_assoc : ``'a -> ('a * 'b) list -> bool`

Same as `List.assoc`

, but simply return true if a binding exists,
and false if no bindings exist for the given key.

`val mem_assq : ``'a -> ('a * 'b) list -> bool`

Same as `List.mem_assoc`

, but uses physical equality instead of
structural equality to compare keys.

`val remove_assoc : ``'a -> ('a * 'b) list -> ('a * 'b) list`

`remove_assoc a l`

returns the list of
pairs `l`

without the first pair with key `a`

, if any.
Not tail-recursive.

`val remove_assq : ``'a -> ('a * 'b) list -> ('a * 'b) list`

Same as `List.remove_assoc`

, but uses physical equality instead
of structural equality to compare keys. Not tail-recursive.

`val split : ``('a * 'b) list -> 'a list * 'b list`

Transform a list of pairs into a pair of lists:
`split [(a1,b1); ...; (an,bn)]`

is `([a1; ...; an], [b1; ...; bn])`

.
Not tail-recursive.

`val combine : ``'a list -> 'b list -> ('a * 'b) list`

Transform a pair of lists into a list of pairs:
`combine [a1; ...; an] [b1; ...; bn]`

is
`[(a1,b1); ...; (an,bn)]`

.
Raise `Invalid_argument`

if the two lists
have different lengths. Not tail-recursive.

`val sort : ``('a -> 'a -> int) -> 'a list -> 'a list`

Sort a list in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see Array.sort for
a complete specification). For example,
`compare`

is a suitable comparison function.
The resulting list is sorted in increasing order.
`List.sort`

is guaranteed to run in constant heap space
(in addition to the size of the result list) and logarithmic
stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

`val stable_sort : ``('a -> 'a -> int) -> 'a list -> 'a list`

Same as `List.sort`

, but the sorting algorithm is guaranteed to
be stable (i.e. elements that compare equal are kept in their
original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

`val fast_sort : ``('a -> 'a -> int) -> 'a list -> 'a list`

Same as `List.sort`

or `List.stable_sort`

, whichever is faster
on typical input.

`val sort_uniq : ``('a -> 'a -> int) -> 'a list -> 'a list`

Same as `List.sort`

, but also remove duplicates.

**Since**4.02.0

`val merge : ``('a -> 'a -> int) -> 'a list -> 'a list -> 'a list`

Merge two lists:
Assuming that `l1`

and `l2`

are sorted according to the
comparison function `cmp`

, `merge cmp l1 l2`

will return a
sorted list containing all the elements of `l1`

and `l2`

.
If several elements compare equal, the elements of `l1`

will be
before the elements of `l2`

.
Not tail-recursive (sum of the lengths of the arguments).

`val to_seq : ``'a list -> 'a Seq.t`

Iterate on the list

**Since**4.07

`val of_seq : ``'a Seq.t -> 'a list`

Create a list from the iterator

**Since**4.07